Hi,
I’m trying to solve some element-wise nonlinear problems. In NGSolve, I believe there are no trivial ways to define local problems (please let me know if there are any).
So, I decided to make a block solver using the block Jacobi preconditioner, a.mat.CreateBlockSmoother
.
But the block Jacobi shows unreliable behavior. It fails even if local problems are non-singular.
I created a simple test case, L2 projection of x^2 + y^2 for DG space with order 2.
The test fails roughly 1 out of 10 runs.
I believe there are some memory leaks or synchronization issues.
from math import sqrt
from ngsolve import BaseMatrix, BilinearForm, L2, Integrate, x, y, SymbolicBFI, GridFunction, CF
from ngsolve.nonlinearsolvers import NewtonSolver
from ngsolve.meshes import MakeStructured2DMesh
class BlockSolver(BaseMatrix):
def _createBlock(self):
self.blocks = []
fes = self.a.space
for elem in fes.mesh.Elements():
self.blocks.append(set(d for d in fes.GetDofNrs(elem)))
def __init__(self, a:BilinearForm):
super(BlockSolver, self).__init__()
self.a = a
self._createBlock()
self.solver = None # At each Newton iteration, Update will be called
def Mult(self, x, y):
self.solver.Smooth(y, x)
def Update(self):
# not sure whether this is necessary after the first call.
self.solver = self.a.mat.CreateBlockSmoother(self.blocks)
if __name__ == "__main__":
mesh = MakeStructured2DMesh(nx=2, ny=2)
fes = L2(mesh, order=2, all_dofs_together=True)
uex = x**2 + y**2 # expect uh == uex
u, v = fes.TnT()
a = BilinearForm(fes)
a += SymbolicBFI((u-uex)*v)
for i in range(4): # Mesh refinement
mesh.ngmesh.Refine()
fes.Update()
uh = GridFunction(fes)
uh.Set(CF(0.0))
local_solver = BlockSolver(a)
solver = NewtonSolver(a=a, u=uh, solver=local_solver)
success, it = solver.Solve()
print(f"Refinement {i}: Newton {it}, error {sqrt(Integrate((uh-uex)**2, mesh))}")