High L2 Error in Taylor-Green Vortex (Navier-Stokes) Using FEM with NGSolve

High L2 Error in Taylor-Green Vortex (Navier-Stokes) Using FEM with NGSolve

Hi all,

I’m currently implementing a finite element solver for the 2D incompressible Navier-Stokes equations using NGSolve and testing it against the classical Taylor-Green vortex benchmark. While the setup runs without any errors, I’m observing unexpectedly large L2 errors in both velocity and pressure, even after only one time step using explicit Euler.


:wrench: Problem Summary:

  • PDE: 2D incompressible Navier-Stokes
  • Test case: Taylor-Green vortex (analytical solution known)
  • Discretization:
    • Finite element spaces: VectorH1(order=k) and H1(order=k-1) with k=2
    • Time-stepping: Explicit Euler
    • Periodic boundary conditions on all sides
    • Mesh curved with mesh.Curve(3)

:chart_with_downwards_trend: Unexpected Results:

Even with a small time step (dt = 0.001, final time T = 1.0), the output is:

java

复制代码

===== L2 Error Results (dt = 0.001) =====
L2 Velocity Error  = 1.61e-01
L2 Pressure Error  = 3.79e-01

These errors seem too large for such a simple benchmark problem.


:mag: Key Code Snippets:

python

复制代码

# Time-stepping loop
t = 0
while t < T - 0.5 * dt:
    conv.Assemble()
    res = a.mat * gfu.vec + conv.vec
    gfu.vec.data -= dt * inv * res
    t += dt

python

复制代码

# L2 error computation
velocity_error = sqrt(Integrate(InnerProduct(gfu.components[0] - velocity_exact,
                                             gfu.components[0] - velocity_exact), mesh))
pressure_error = sqrt(Integrate((gfu.components[1] - pressure_exact)**2, mesh))

:white_check_mark: What I Have Tried:

  • :heavy_check_mark: Initial conditions match the analytical solution at t=0
  • :heavy_check_mark: Pressure normalization to eliminate constant offset
  • :heavy_check_mark: Periodic boundary conditions using copy and bc="periodic"
  • :heavy_check_mark: Mesh curvature enabled (mesh.Curve(3))
  • :heavy_check_mark: Reduced dt to 1e-4 — error still significant
  • :heavy_check_mark: Tried both assembled and non-assembled versions of convective term

:question: Main Questions:

  1. Is my implementation of the convective term correct?
    I’m using grad(u)*u, but not sure if this is sufficient or needs skew-symmetric form/stabilization?
  2. Is explicit Euler a poor choice for this Reynolds number (Re=100)?
    Should I switch to an implicit method even for small dt?
  3. Are the chosen FE spaces appropriate for velocity-pressure pairing?
    Using VectorH1 and H1 with orders k and k-1, respectively.
  4. Do I need any pressure stabilization terms in this setup?

:paperclip: Full Code:

python

复制代码

from ngsolve import *
from netgen.geom2d import *
from ngsolve.webgui import Draw
import numpy as np

# 定义参数
k = 2
Re = 100
nu = 1 / Re
T = 1.0
dt = 0.001  # 仅一个时间步长

# 创建网格和有限元空间(周期性)
geo = SplineGeometry()
points = [(0,0), (1,0), (1,1), (0,1)]
pnums = [geo.AppendPoint(*p) for p in points]
bottom = geo.Append(["line", pnums[0], pnums[1]], leftdomain=1, rightdomain=0, bc="periodic")
right = geo.Append(["line", pnums[1], pnums[2]], leftdomain=1, rightdomain=0, bc="periodic")
top = geo.Append(["line", pnums[3], pnums[2]], leftdomain=0, rightdomain=1, copy=bottom, bc="periodic")
left = geo.Append(["line", pnums[0], pnums[3]], leftdomain=0, rightdomain=1, copy=right, bc="periodic")

mesh = Mesh(geo.GenerateMesh(maxh=1/32))
mesh.Curve(3)

V = VectorH1(mesh, order=k)
Q = H1(mesh, order=k-1)
X = FESpace([V, Q])

# 函数定义
u, p = X.TrialFunction()
v, q = X.TestFunction()

def taylor_green_velocity(t):
    decay = exp(-8 * pi**2 * nu * t)
    return CoefficientFunction((sin(2*pi*x)*cos(2*pi*y)*decay, -cos(2*pi*x)*sin(2*pi*y)*decay))

def taylor_green_pressure(t):
    decay = exp(-16 * pi**2 * nu * t)
    return 0.25 * (cos(4*pi*x) + cos(4*pi*y)) * decay

def NormalizePressure(gfu, mesh):
    p = gfu.components[1]
    mean_p = Integrate(p, mesh) / Integrate(1, mesh)
    
    # 构造与 p.vec.data 同类型、同大小的常数向量
    ones = p.vec.CreateVector()
    ones[:] = 1.0
    ones *= mean_p

    # 执行减法:p -= mean_p * 1
    p.vec.data -= ones


# 初始条件
gfu = GridFunction(X)
velocity, pressure = gfu.components # X由V,P组成,gfu.components即为[V,P]
gfu.components[0].Set(taylor_green_velocity(0))
gfu.components[1].Set(taylor_green_pressure(0))

# 系统矩阵定义(Euler)
a = BilinearForm((nu*InnerProduct(grad(u),grad(v)) - div(v)*p - div(u)*q)*dx).Assemble()

mstar = BilinearForm(X, symmetric=True)
mstar += InnerProduct(u, v) * dx
mstar += dt * nu * InnerProduct(grad(u), grad(v)) * dx
mstar += dt * (-div(v) * p * dx - q * div(u) * dx)
mstar.Assemble()

# conv = BilinearForm(X, nonassemble=True)
# conv += InnerProduct(grad(u)*u, v) * dx
conv = LinearForm(X)
conv += InnerProduct(grad(velocity)*velocity,v)*dx
inv = mstar.mat.Inverse(X.FreeDofs())

# 时间推进
t = 0
while t < T - 0.5 * dt:
    conv.Assemble()
    # res = (a.mat + conv.mat) * gfu.vec
    res = a.mat * gfu.vec + conv.vec
    gfu.vec.data -= dt * inv * res
    t += dt
    if int(t*10000) % 1000 == 0:
        print(f"t = {t:.4f}")
        
NormalizePressure(gfu, mesh)

# 误差计算
velocity_exact = taylor_green_velocity(T)
pressure_exact = taylor_green_pressure(T)

velocity_error = sqrt(Integrate(InnerProduct(gfu.components[0] - velocity_exact,
                                             gfu.components[0] - velocity_exact), mesh))
pressure_error = sqrt(Integrate((gfu.components[1] - pressure_exact)**2, mesh))

print("\n===== L2 误差结果 (dt = 0.0001) =====")
print(f"L2 Velocity Error  = {velocity_error:.6e}")
print(f"L2 Pressure Error  = {pressure_error:.6e}")

# 提取压力分量
p_num = gfu.components[1]

# 计算压力在整个域上的积分均值
total_volume = Integrate(1, mesh)
mean_pressure = Integrate(p_num, mesh) / total_volume

Any insight into why this setup gives such large errors would be greatly appreciated. I’m especially looking for advice on time integration schemes, correct form of the nonlinear term, and anything related to FE space compatibility for incompressible flow.

Thanks a lot in advance!

— A curious NGSolve user trying to validate Taylor-Green Vortex :tornado:

You have to define the spaces as periodic as well:

V = Periodic(VectorH1(mesh, order=k))
Q = Periodic(H1(mesh, order=k-1))

(see tutorials 2.12 Periodic Spaces — NGS-Py 6.2.2501 documentation)

Thank you for your response! I still have one question: why is there a need for Periodic() when simulating the Taylor-Green Vortex, since it only requires periodic boundary conditions and not periodic space?In documentation, I note that Periodic() is aimed to set Periodic space different from periodic boundary

A periodic space is a space with periodic boundary values, so both are the same.

so i must set both of them?(only set periodic boudary or periodic space have no use? i have no idea about how to test it ,can you answer?)